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Abstract

This paper demonstrates efficient solver technologies applied to the non-linear frequency domain (NLFD) method.
The basis of the NLFD method is to assume the time period of the solution�s oscillation and to transform both the
solution and residual using a discrete Fourier transform. An unsteady residual is formed in the frequency domain
and iteratively driven to a negligible value. This method is amenable to many of the convergence acceleration techniques
used for steady state flows including pseudo-local time stepping, implicit residual averaging, coarse grid viscosity and
multigrid. This paper will address the implementation of these techniques such that convergence rates of the modified
unsteady solver are equivalent to those of the original steady-state techniques.
� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

The calculation of unsteady flows continues to present a severe challenge to computational fluid
dynamics (CFD). Depending on the requirements imposed by the end user, these unsteady flows can
be divided into two categories. The first category contains flows, where the resolution of the complete
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Nomenclature

English letters
c wave speed
Cl coefficient of lift
Cm coefficient of moment
e residual averaging coefficient
El error in lift coefficient magnitude
Em error in moment coefficient magnitude
F flux contained in spatial residual
I unsteady residual
k wave number
N vector normal to surface or number of samples used in discrete Fourier transform
NM number of multigrid cycles required for a converged solution
NN number of solution instances required to resolve a solution oscillation
NP number of periods required to reach a periodic steady state
R spatial residual
s integer power of spectral viscosity term or arc length
t time
U continuous solution
V volume
W discrete solution
x spatial dimension

Subscripts and superscripts

ð Þ~ vector form of variable

ð Þ^ k Fourier coefficient of variable

ð Þ� averaged variable

Greek and roman symbols

eN coefficient that scales course grid spectral viscosity
k eigenvalue
K steady-state CFL
kt eigenvalue of temporal discretization
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time history of the solution is required by the user. Another category contains flows, where the user
requires only the solution once it has reached a periodic steady state. The motivation behind this paper
is to demonstrate numerical techniques that reduce the cost of computing this second category involving
only periodic flows.

In the worst case, the timescale of the initial transient decay is much larger than the timescale of the
periodic solution. For time accurate flow solvers, computing the decay of the initial transients repre-
sents the dominant computational cost in comparison with a single oscillation of the solution at its
periodic steady state. An example of a physical problem with multiple timescales is the numerical sim-
ulation of the flow through an axial flow turbine. Yao et al. [20] computed an unsteady Reynolds aver-
aged Navier–Stokes (RANS) calculation on a 1 1

2
stage turbine modeled after an experimental test rig. A
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periodic steady state was reached after roughly 2500 time steps. The fundamental period of the oscil-
lation of the solution at its converged state is resolved in about 80 time steps; a ratio of approximately
3.2%.

Traditionally scientists have attempted to mitigate these costs by employing Fourier series in the
solution of the partial differential equations to solve directly for the solution at its periodic steady
state. In fluid mechanics, acousticians and other researchers routinely linearize the conservation equa-
tions and assume that the unsteady perturbations are periodic in time. The procedure is to first solve
for the mean flow components of the solution and then independently solve for any temporal fre-
quency of the solution. The total solution can be reconstructed as the superposition of each frequency
component given the linearization of the governing equations. The cost of this solution procedure is
proportional to the product of the number of temporal modes calculated and the cost of the steady
solution. The scheme does have drawbacks. Applications in turbomachinery and aeroelasticity often
require transonic non-linear solutions, making this approach inapplicable due to the assumptions of
the linearization.

Efficient periodic solutions to fully non-linear systems of equations were first proposed by Hall et al.
[3,4] using the harmonic balance technique. This technique utilizes a pseudo-spectral approach to repre-
sent the non-linear residual in the temporal domain. McMullen et al. [14,15] proposed the non-linear fre-
quency domain (NLFD) method which represents a form of the residual in the frequency domain.
Regardless of the approach, iterative methods are then employed to drive this residual to a negligible
value in a manner that is consistent with steady-state solvers. Both scientists have demonstrated the effi-
ciency of this technique to represent complex non-linear flow solutions using a minimum number of
modes. If all the modes of the solution converge as quickly as a similar steady-state calculation, then
the cost of the calculation is the product of the cost of a steady solution and the number of instances
used in the time series of the unsteady residual. This is consistent with linearized methods except that
a slight penalty is incurred by the additional memory required to hold all the unsteady modes
simultaneously.

The critical item in the discussion of the method�s cost is the assumption that the convergence rate of the
pseudo-spectral form of the residual is equivalent to that of the convergence rate of a steady-state code. One
of the advantages of the pseudo-spectral approach is that it is amenable to parallel processing and classical
convergence acceleration methods such as pseudo-local time stepping, multigrid, residual averaging, and
coarse grid viscosity. It is the implementation details of these methods that are the focus of this paper. Ulti-
mately, we will demonstrate a solver which has convergence properties consistent with representative solv-
ers already developed for steady flows.

In later sections of this paper, we rigorously compare the cost of the NLFD solver to the cost of a rep-
resentative unsteady solver, UFLO82. The comparison is based on operating the two codes (both with
equivalent spatial discretizations) at equivalent error levels, and measuring the computational cost associ-
ated with each method. This paper will demonstrate the efficiency of the NLFD method over time accurate
techniques for computations of a transonic pitching airfoil where the decay of the initial transients is rel-
atively fast. In comparison to the turbomachinery example cited above, this ratio of cost spent computing
the final period to that used computing the initial transient decay is between 14% and 33%. Although this
quick decay naturally favors time accurate methods, we will demonstrate a clear performance benefit asso-
ciated with NLFD methods. The relatively efficiency of NLFD methods will only improve for more com-
plex problems like the turbomachinery example cited above.

Finally, we will demonstrate the sensitivity of the convergence rates of this solver to various physical
parameters in the model problem. Specifically, we will vary the frequency of the airfoil�s oscillation and
its magnitude in an attempt to affect the level of non-linearities exhibited in the solution. These tests estab-
lish the robustness of the technique and demonstrate that the efficiency gains stated in previous sections
were not the result of a model problem that was fortuitously selected.
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2. Numerical method

2.1. Transforming the equations into the frequency domain

Detailed discussions of the development of the NLFD method for the Euler and Navier–Stokes equa-
tions have already been published [16]. However, the flexibility of the approach will allow its extension
to many other similar systems of partial differential equations. As such this section will discuss the method
using an arbitrary system of time dependant conservation equations that can be written for a generic con-
trol volume, X, as
d

dt

Z
X
U dV þ

I
oX

~F � ~N ds ¼ 0; ð1Þ
where U is the continuous solution variable and ~F represents the transport of the conserved quantity across
the control volume boundary. Assume that we can approximately represent the above equation using the
following:
V
oW
ot

þ R ¼ 0; ð2Þ
where W and R are discrete approximations of the solution and flux integrals, respectively. If W an R are
periodic in time then both can be represented by separate Fourier series:
W ¼
XN2�1

k¼�N
2

bW k e
ikt;

R ¼
XN2�1

k¼�N
2

bRk e
ikt;

ð3Þ
where
i ¼
ffiffiffiffiffiffiffi
�1

p
. ð4Þ
These discrete Fourier transforms can be substituted into the semi-discrete form of the governing equations
provided by Eq. (2), and the time derivative of the state variable can be moved inside the series summation.
Taking advantage of the orthogonality of the Fourier terms results in a separate equation for each wave-
number, k, in the solution
ikV bW k þ bRk ¼ 0. ð5Þ
Here, however each coefficient bRk of the transform of the residual depends on all the coefficients bW k,
because R(W(t)) is a non-linear function of W(t). Thus (5) represents a non-linear set of equations which
must be iteratively solved. The solver attempts to find a solution, W, that drives this system of equations
to zero for all wavenumbers, but at any iteration in the solution process the unsteady residual, bI k, will be
finite:
bI k ¼ ikV bW k þ bRk. ð6Þ

The nonlinearity of the unsteady residual stems from the spatial operator. There are two approaches to cal-
culating the spatial operator expressed in the frequency domain. The first uses a complex series of convo-
lution sums to calculate bRk directly from bW k. Such an approach was discussed in Hall�s introductory paper
on Harmonic Balance techniques [3]. Hall justly discarded the approach due its massive complexity (con-



M.S. McMullen, A. Jameson / Journal of Computational Physics 212 (2006) 637–661 641
sidering artificial dissipation schemes and turbulence modeling) and cost that scales quadratically with the
number of modes N.

The alternative proposed by Hall and modified by this research is to use a pseudo-spectral approach that
relies on the computational efficiency of the fast Fourier transform (FFT). A diagram detailing the trans-
formations used by the pseudo-spectral approach is provided in Fig. 1. The pseudo-spectral approach be-

gins by assuming that bW k is known for all wavenumbers. Using an inverse FFT, bW k can be transformed
back to the physical space resulting in a state vector W(t) sampled at evenly distributed intervals over
the time period. At each of these time instances the steady-state operator R(W(t)) can be computed. A
FFT is then used to transform the spatial operator to the frequency domain, where bRk is known for all
wavenumbers. The unsteady residual bI k can then be calculated by adding bRk to the spectral representation
of the temporal derivative ikV bW k.

The cost of the FFT is proportional to N ln(N). For most realistic values of N (N = 1 ! 10) the
cost of the pseudo-spectral approach is dominated by the cost associated with calculating the spatial
operator. Consequently the overall cost of the simulation scales by the product of the cost of
evaluating a steady-state spatial operator and the number of time instances used to represent the solu-
tion N.

Instead of directly solving Eq. (5) a pseudo-time derivative can be added, and a time-stepping scheme
can be employed to numerically integrate the resulting equations
-2

Fig. 1.
non-lin
V
o bW k

os
þ bI k ¼ 0. ð7Þ
The application of the pseudo-time derivative is consistent with established convergence acceleration tech-
niques used to solve steady-state problems. In the NLFD case, an unsteady residual exists for each wave-
number used in the solution and the pseudo-time derivative acts as a gradient to drive the absolute value of
all of these components to zero simultaneously.
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2.2. Local time stepping

A modified Runge–Kutta (RK) time-stepping scheme is used to advance the solution forward in pseudo-
time [13]. Separate coefficients are used for the dissipative and convective components of the spatial oper-
ator at each stage of the RK scheme. These are based on a set of coefficients optimized to accelerate
convergence for steady-state flows. Since the pseudo-time equation is being used to solve Eq. (6) in the
frequency domain, the transformations between the frequency and the time domain illustrated in Fig. 1
are applied at every stage of the RK scheme.

For each wavenumber, a local time step dictated by numerical stability is used in each cell. Unlike an
explicit time-accurate scheme where the global time step is determined by the minimum of the time steps
for all the cells, the local time stepping scheme maximizes the correction each cell can make per time step.
The pseudo-time evolution does not affect the temporal accuracy of the NLFD formulation, which is only a
function of the number of modes used to represent the solution and residual.

Previous methods to solve unsteady flow problems have employed both explicit [10] and implicit [17]
approaches in the treatment of the diagonal terms associated with the temporal derivatives. The explicit
approach bases the calculation of the temporal derivative on known values of the solution, while the
implicit approach uses a future value of the solution in this calculation. Following the work of Melson
et al. [17] a stability analysis of both schemes has been performed and documented by McMullen [16].
Due to the imaginary character of the spectral representation of the temporal derivative, the implicit
approach is flawed from a stability perspective. The NLFD code has been implemented with a explicit
scheme where the temporal derivative is completely reevaluated at each step in the scheme. However,
the set of coefficients associated with the viscous terms lag the evaluation of the spatial operator. This
complicates the dataflow diagram for the pseudo-spectral approach shown in Fig. 1. A modified data-
flow diagram including these lagged operations is included in Fig. 2. This diagram shows that the
spatial operator, R, calculated in physical space is a function of the spatial operator at the previous
stage and the spatial operator calculated using the current stage of the solution. The current iterate
of the spatial operator is transformed back into the frequency domain using a FFT where it is added
to frequency domain representations of the temporal derivative and the initial solution to produce a
new stage of the solution.

2.3. Residual averaging

An implicit smoothing operator is applied to the unsteady residual in a process known as residual aver-
aging. The coefficients of this implicit smoothing operator are chosen such that larger time steps can be used
while maintaining the overall stability of the numerical scheme. The additional cost of applying the oper-
ator is offset by the improved convergence rates per multigrid cycle.
+ Wk
^FFT FFT +R̂k

ikVŴk

R(t)W(t)Ŵk

R(t)

m

^
kW
o

Fig. 2. Complete dataflow diagram of the time-stepping method.
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This section proposes a residual averaging method which averages only in the spatial directions. Inspec-
tion of the unsteady residual presented in Eq. (7) shows that the temporal derivative term is proportional to
the product of the temporal frequency and cell volume. For low frequency cases on a well refined grid these
terms are second order and their impact on the stability of the numerical method can be neglected. How-
ever, the multigrid process transfers the solution to a very coarse mesh where these terms may dominate. If
one does not adjust the time step accordingly, the instabilities created on the coarse mesh will cause insta-
bilities on the fine mesh ultimately corrupting the solution.

The remainder of this section will use the advection equation as a model to derive stability estimates for
the residual averaging operators. In space and time a continuous form of implicit residual averaging can be
written as follows:
1� e
o2

ox2

� �
DsbI ¼ Ds

ou
ot

þ c
ou
ox

� �
. ð8Þ
For consistency with the NLFD method, assume that both the solution and residual can be represented by
a Fourier series in time. Applying central difference operators to the spatial derivatives results in a discrete
approximation to the continuous equation
�eDsk
bI kiþ1

þ ð1þ 2eÞDskbI k � eDsk
bI ki�1

¼ �Dsk ikûk þ c
ûkiþ1

� ûki�1

2Dx

� �
. ð9Þ
A von Neumann analysis of the resulting equation provides the spectral footprint of the time advancement
scheme. In semi-discrete form the averaged residual can be written as the product of an eigenvalue k and the
solution
Dsk
bI k ¼ kiûk;

jkj ¼ kDsk þ K sinðqÞ
1þ 2eð1� cosðqÞÞ ;

K ¼ cDsk
Dx

;

q ¼ xDx.

ð10Þ
A thorough analysis of the effects of residual averaging on the stability of the NLFD method is provided
by McMullen et al. [16]. Without the extensive algebra, a result can be obtained using asymptotic meth-
ods. If the temporal derivative is assumed large in comparison to the spatial residual then Eq. (10) is
simplified to
jkj ¼ kDsk
1þ 2eð1� cosðqÞÞ . ð11Þ
By inspection, the frequency q that maximizes the length of the residual is zero. Substituting this result back
into the original equation results in an expression for the maximum permissible time step, which in essence
is a CFL limiter that rescales the length of the eigenvalue to ensure stability
Dsk <
jkj
k

for k > 0. ð12Þ
2.4. Coarse grid spectral viscosity

During the original tests of the multigrid solver, it was noticed that the convergence rate of the solver
exhibited a dependence on the frequency of the unsteady solution; as this frequency increased the
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convergence rate of the solver decreased. Noting Eq. (6), the effect of frequency on the temporal derivative
is obvious. It can be argued that if the convergence rate of the steady problem (k = 0) is considered optimal,
then any increase in frequency moves the set of equations away from the steady-state solution and nega-
tively impacts convergence. In order to mitigate these effects, additional terms have been added to the
coarse grid residual:
V
d bW k

ds
þ ikV bW k þ bRk ¼ eNV ðikÞ2s bW k. ð13Þ
Terms of this type were originally introduced in spectral viscosity methods proposed by Gelb and Tadmor
[2,19]. The intent of these schemes was to add even powered derivatives of the solution to damp higher fre-
quencies while maintaining spectral accuracy. However, in our approach these additional terms only affect
the residual on coarser meshes in the multigrid process, and do not affect the converged answer on the fine
mesh. By damping high frequency errors they improve the projected coarse mesh correction to the finest
solution.

Given the stability region of a typical RK time advancement scheme, we can determine the gain/damp-
ing of the scheme as a function of the frequencies in the discretized solution. For the purposes of this anal-
ysis, we will assume that R is a linear operator of the following form:
R ¼ c
dW
dx

� lDx3
d4W
dx4

. ð14Þ
The Dx3 term corresponds to the higher order term frequently seen in shock-capturing schemes that use a
blend of low and higher order diffusive terms depending on their proximity to the shock [11,12]. Using cen-
tral difference operators, and assuming reasonable values for the constants in Eq. (14), one could write the
spectral footprint of the overall discrete operator as
kDs ¼ ktDs� 3
8
ð1� cosðqÞÞ2 þ 2:5 sinðqÞi; ð15Þ
where
kt ¼ V ðik � eN ðikÞ2sÞ. ð16Þ

This spectral footprint is drawn on the stability diagrams for an explicit scheme in Fig. 3(a). The blue
line is calculated using a ktDs ¼ i

2
which is representative of an NLFD scheme without spectral viscos-

ity. The red line is calculated with ktDs ¼ � 1
2
þ i

2
corresponding to an NLFD scheme with spectral vis-

cosity. Obviously, the addition of spectral viscosity shifts the ellipses farther to the left in the complex
kDs plane. The gain along the path of the ellipse is provided in subplot (b) of Fig. 3. The data show
that the shift in the spectral footprint induced by the spectral viscosity lowers the gain of the time-
stepping scheme for the majority of frequencies in the solution. Lower gains increase the damping
and improve the efficiency of the multigrid solver. However, the stability region of the time-advance-
ment scheme limits the magnitude of this shift, which is equivalent to the magnitude of the spectral
viscosity term.

To illustrate the effects of this method on a NLFD calculation of the unsteady Euler equations, a con-
vergence study was performed using a test case which highlights the dependence between convergence and
frequency. The case uses a 193 · 49 C-mesh around a 64A010 pitching airfoil with boundary conditions
approximating Davis�s experiment [1] in AGARD Report 702 (CT Case 6, Dynamic Index 55). The only
deviation from the parameters defining this case are an increase in the dynamic angle of attack to ±3.0�.
This was chosen to increase the nonlinearities in the flow field ultimately providing a more challenging test
case.

Fig. 4 shows the magnitude of all components of the unsteady residual as a function of the multigrid
cycle. The plots in this figure show the residual convergence for solvers with and without coarse grid



Fig. 3. (a) Stability diagram of the explicit time-stepping scheme. The red and blue ellipses are the spectral footprint of the
discretization with and without spectral viscosity respectively, (b) The gain of the time-stepping scheme along the paths of the spectral
footprint.
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Fig. 4. Magnitude of all components of the unsteady density residual as a function of the multigrid cycle: (a) NLFD solver with coarse
grid spectral viscosity and (b) NLFD solver without coarse grid spectral viscosity.
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spectral viscosity. Over-plotted on these graphs is the convergence rate of the NLFD solver for the analo-
gous steady problem lacking the pitching motion of the airfoil. Without spectral viscosity, the convergence
rate of the unsteady NLFD solver is not equivalent to the steady-state case. However, Fig. 4(a) shows that
the optimal convergence rate of the steady solver can be reclaimed for unsteady calculations through the
use of spectral viscosity.

In the current formulation, the coarse grid spectral viscosity does not affect the fine grid solution. This is
confirmed by subplot (a) of Fig. 5, which shows the difference between the qe component of the solutions
computed with and without spectral viscosity. The magnitude of the differences are consistent with the
accuracy limitations of the floating point math used in the simulation. Although not shown, the other three
components of the solution are similar; demonstrating that there is no effective difference between the
solutions.

Given that this approach affects only the convergence and not the final answer, a number of terms of
varying order with different coefficients ðs ¼ 0; 1

4
; 1
2
; 1ðeN ¼ 0:1

N
2�1

! 0:75
N
2�1

Þ and cutoff frequencies were tested

on the pitching airfoil case. The cutoff frequency represents the lowest frequency to which the spectral

viscosity term was applied; typically the fundamental harmonic. A variety of different test cases were at-
tempted by varying the pitching frequency of the airfoil. Surprisingly the lower order dissipation schemes,
including the zeroth order (s = 0), outperformed the higher order approaches. Regardless of the combi-
nation of coefficients, convergence performance continued to be a function of pitching frequency, and an
approach that would automatically regain the optimal steady-state convergence rate over the variety of
physical conditions was not found. However, using a coarse grid spectral term with ðeN ¼ 0:75

N
2�1

Þ always

improved the convergence performance over NLFD schemes not using this term. Given that this term
is only calculated on the coarse grids, its impact on the computational cost can be considered negligible.
The relative simplicity of implementing this term, its low cost, and consistent positive impact on conver-
gence warrant the use of this approach in the future.
3. Efficiency comparison between the UFLO82 and NLFD solvers

The critical question is whether the non-linear frequency domain method offers a major reduction in
computational cost over established time-accurate methods. This section addresses this question by present-
ing a comparison of a representative time-accurate code UFLO82 [10,18], with an NLFD code for Euler
simulations of a pitching airfoil.

We begin by replacing the boundary conditions and spatial operators of the NLFD code with those of
UFLO82, and establish that the two codes produce equivalent steady-state solutions. Next we conduct a
convergence study to quantify the error in both codes as a function of temporal resolution. With the
codes synchronized such that they produce solutions at equivalent error levels we can then compare each
code�s efficiency on the basis of computational cost. Since the spatial operators are equivalent, the com-
parison directly quantifies the efficiency of each method in representing the solution�s temporal
dimension.
3.1. Test case

Table 1 provides the boundary conditions employed by the pitching airfoil test case. Due to the mesh
topology requirements of the UFLO82 code the grid used is an O-mesh. It was algebraically generated with
161 and 33 points in the circumferential and radial directions, respectively. The average farfield boundary
distance for this grid is 129 airfoil chords.
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Table 1
Description of the test case used in the comparison of UFLO82 and the NLFD codes

Parameter Value

Airfoil NACA 64A010
Mean angle of attack 0.0�
Angle of attack variation ±2.0�
Mach number 0.8
Reduced frequency 0.05
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3.2. Comparison with UFLO82 For steady flow

We begin by verifying the equivalence of the spatial discretization and boundary conditions of the mod-
ified NLFD code with those contained in the UFLO82 code. Both UFLO82 and the modified NLFD code
employ a cell centered finite volume scheme with JST artificial dissipation, a linear pressure extrapolation at
the wall, and Riemann invariants in the farfield boundary condition [5–9]. Although both codes can com-
pute unsteady flows, for this case they were run as steady-state codes with the dynamic angle of attack and
the associated grid rotation terms set to zero. In order to eliminate the impacts of residual error on the solu-
tion, the number of multigrid cycles applied in the solution process was selected to drive the magnitude of
all components of the residual to zero.

For verification, subplot (b) of Fig. 5 plots the difference between a component of the steady solutions
produced by these two codes. Although not shown, all four components (q, qu, qv and qe) of the two solu-
tions match to machine accuracy, establishing the equivalence of the spatial operators and boundary con-
ditions between the two codes.

3.3. Comparison with UFLO82 for unsteady flow

For unsteady flows, UFLO82 uses a dual time-stepping technique implementing a series of nested loops.
The inner loop is a set of multigrid cycles used to drive the unsteady residual for that time step to a neg-
ligible value. This unsteady residual is written as the combination of an implicitly evaluated spatial residual
and a second-order accurate A-stable discretization of the temporal derivative.
3W nþ1 � 4W n þ W n�1

2Dt
þ RðW nþ1Þ ¼ 0. ð17Þ
Typically, the solution at the end of an inner loop is not converged to machine accuracy. In this case, the
marginal change in the fluid properties from one additional multigrid cycle is not warranted due to the
accuracy/stability requirements placed on the solution. For frequency domain solvers, the magnitude of
the unsteady residual for all the wavenumbers is reduced to a negligible value by a series of multigrid cycles.

The outer loop of the dual time-stepping technique provides the time history of the discrete solution. The
temporal accuracy of the solution is dictated by the time step employed by the solver which is directly re-
lated to the number of steps per temporal period in the solution. Analogously, the NLFD solver affects the
temporal accuracy of its solution by specifying the number of modes used in the solution�s representation.
This directly affects the cost of the solver, by dictating the number of residual evaluations needed to be cal-
culated in the pseudo-spectral approach.

The final parameter affecting the cost of a dual time-stepping solution is its proximity to a periodic
steady state. Time-accurate solvers capture the decay of initial transients until the solution approaches a
periodic steady state. Eventually the marginal decay of these transients produced from one additional time
step is not warranted due to the accuracy requirements placed on the solution. The cost of resolving the



initial transients is eliminated in NLFD methods since these solvers admit only components of the solution
which are periodic over a predefined length of time.

To summarize the previous discussion, Table 2 itemizes the costs associated with the dual time-stepping
and NLFD methods. The comparison provided at the conclusion of this section will quantify each of these
parameters and provide a computational cost for a solution in terms of the number of multigrid cycles used
in its calculation.

3.3.1. Temporal resolution
To ensure that both codes were calculating solutions at equivalent error levels, a convergence study was

performed to quantify error as a function of temporal resolution. This study will identify the number of
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Fig. 6. Error as a function of physical time for various temporal resolutions of the UFLO82 code including the control solution: (a) lift
and (b) moment.
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Table 3
The number of time steps per period required by UFLO82 to reach error levels equivalent to results produced by an NLFD code using
one, two, and thee time varying harmonics

NLFD modes UFLO82 NN

Cl Cm

1 45 18
2 125 45
3 244 123
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resolution used by each UFLO82 calculation. To check the accuracy of the UFLO82 code, subplot (b) pro-
vides the same data replotted on a full logarithmic scale showing that the UFLO82 error is proportional to
Dt2. Overplotted on all these figures are horizontal lines representing error levels in Cl1 and Cm1

based on
NLFD calculations with varying numbers of temporal modes. The intersection of the NLFD lines with the
UFLO82 curve shows the temporal resolutions each code must use to achieve equivalent error levels. These
data are summarized in Table 3. Using Cl as a figure of merit, the NLFD code needs only 1 temporal mode
to obtain similar error levels as a UFLO82 code using 45 time steps per period. Using Cm in the same capac-
ity, the UFLO82 code needs only 18 points for one mode in the NLFD code. Regardless of the figure of
merit, for every additional temporal mode added in the NLFD calculation, the temporal resolution of
UFLO82 needs to be increased by roughly a factor of 2.5–3.

3.3.2. Multigrid cycles

In an attempt to quantify NM for UFLO82, a convergence study was performed to identify the minimum
number of multigrid cycles per time step required to reach the asymptotic error levels identified in Fig. 6.
These error levels were functions of UFLO82 calculations where the residual was driven to machine zero at
each time step. However, the residual error needs only to be small relative to the error due to the temporal
discretization. Consequently an unbiased cost comparison of the methods should quantify the minimum
number of multigrid cycles per time step required by UFLO82 to reach the equivalent error levels.
Fig. 9 provides this data, for both Cl and Cm, for each temporal resolution identified in Table 3. In most
cases, only six multigrid cycles per step were required.

A similar convergence study was performed for the NLFD code. Fig. 10 plots the error level as a func-
tion of the number of multigrid cycles. The intersection of the rightmost dashed line with the individual
curves approximately identifies the minimum number of multigrid cycles required to reach the asymptotic
error levels; these values are shown in Table 4.

3.3.3. Cost per multigrid cycle

The dominant cost within an NLFD solver, is the time associated with calculating instances of the spa-
tial residual along the time period of the solution. Consequently the work per multigrid cycle scales with the
number of time instances used to represent the solution. If N is the number of time varying modes, then the
work per multigrid cycle should scale like 2N + 1. Table 5 provides the measured execution time per NLFD
multigrid cycle divided by the time required for a similar steady state cycle. As expected, the data approx-
imates the growth rate cited above.

3.3.4. Decay of initial transients

The final factor in the cost of the UFLO82 solution is the time rate of decay of the initial transients.
Fig. 11 plots the decay in Cl1 and Cm1

error over time calculated by UFLO82 for the 45 time steps per per-
iod case. Similar plots for the other temporal resolutions have been generated, but for the sake of brevity
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Table 4
The number of multigrid cycles required by the NLFD solver to obtain a solution at equivalent error levels

NLFD modes MG cycles

Cl Cm

1 44 37
2 60 50
3 72 65

Table 5
The ratio of the execution time of an NLFD solution to a steady state solution, NN, as a function of the number of unsteady modes
used in the NLFD solution

Number of unsteady modes 0 1 2 3

NLFD cost
Steady�state cost 1.0 3.06 5.13 7.30
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are not shown in this paper. Based on these data, Table 6 provides estimates of the number of periods re-
quired for the error to approach its asymptotic value. These numbers were selected conservatively to the
benefit of the cost estimation for UFLO82.

3.3.5. Cost comparison

The cost of the two solvers can now be compared using the data provided in the previous sections. This
comparison assumes that the work associated with a single multigrid cycle is equivalent between the two
codes. This is an accurate approximation, given that UFLO82 and the NLFD code use the same pseu-
do-time advancement, residual averaging and multigrid aggregation and prolongation operators. This ap-
proach provides a comparison independent of the code implementation and compiler optimization
algorithms.

Table 7 provides the relative cost data using Cl and Cm as the figures of merit. If the user requires
equivalent error levels for both C1 and Cm data, then the lift results will drive the cost comparison.
In this case, the NLFD code is a factor of 8–19 times faster than the UFLO82 code depending on
the error level. In the worst case, using only Cm error as the basis for comparison, the NLFD code at
the lowest temporal resolution is approximately 3 times faster the UFLO82 code. Not surprisingly,
the marginal cost of the NLFD solver is also better than the UFLO82 code. For either figure of merit,
the cost multiple between the two codes increases in favor of the NLFD method as the temporal accu-
racy is increased.
4. Sensitivity of the NLFD solver to flow conditions

4.1. Convergence versus reduced frequency

Consider the convergence rate of the steady residual an optimal performance condition. Obviously,
increasing pitching frequency moves the NLFD residual away from its steady analogue. However, this
section demonstrates that our implementation of the NLFD method will regain the optimal steady conver-
gence rates; regardless of the temporal derivative�s magnitude within the unsteady residual.

The test case uses the boundary conditions identified in Table 1 except that the reduced frequencies were
varied over a range from 0 to 0.5. Solutions were calculated on a 193 · 49 C-mesh using three time varying
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Table 6
The number of time periods required by the UFLO82 solver to reach convergence for each temporal resolution

Cl Cm

NN Periods NN Periods

45 4 18 3
125 5 45 4
244 7 123 6

Table 7
Cost comparison between UFLO82 and NLFD codes using both the errors in coefficient of lift and moment as the figure of merit

NLFD modes Cost in multigrid cycles, NM · NN UFLO82, NN Cost in multigrid cycles, NM · NN · NP

Error in Cl1 as figure of merit

1 44 · 3.06 = 135 45 6 · 45 · 4 = 1080
2 60 · 5.13 = 308 125 6 · 125 · 5 = 3750
3 72 · 7.30 = 526 244 6 · 244 · 7 = 10248

Error in Cm1
as figure of merit

1 37 · 3.06 = 113 18 6 · 18 · 3 = 324
2 50 · 5.13 = 257 45 6 · 45 · 4 = 1080
3 65 · 7.30 = 475 123 6 · 123 · 6 = 4428
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modes such that the highest temporal component is oscillating at three times the fundamental frequency.
All the calculations were performed holding constant any convergence acceleration parameters and artifi-
cial dissipation coefficients.

Subplot (a) within Fig. 12 shows the maximum over all the wavenumbers of the absolute value of the
residual as a function of the multigrid cycle. The fastest converging solution was produced from a steady
calculation (zero reduced frequency) at the mean angle of attack. The unsteady calculations exhibit sim-
ilar convergence trends up to 100 multigrid cycles, or about a residual decay of about 10–11 orders of
magnitude. At this point, the convergence rates begin to vary slightly until the residual reaches machine
zero.

4.2. Convergence versus dynamic angle of attack

Unlike reduced frequency, the magnitude of the dynamic angle of attack terms are not directly in-
cluded in the temporal derivative terms of the NLFD formulation. However, the effect of increasing
the dynamic angle of attack is to increase the flow field nonlinearities and subsequent coupling between
temporal modes. As such the sensitivity of the solver convergence rates with respect to this parameter
should be investigated.

The test case uses the boundary conditions identified in Table 1 except that the dynamic angle of attack
is varied from ±0� to ±2.8�. Again, convergence acceleration parameters and artificial dissipation coeffi-
cients are held constant to ensure convergence rates are strict functions of dynamic angle of attack

Subplot (b) within Fig. 12 shows the maximum over all the wavenumbers of the absolute value of the
residual as a function of the multigrid cycle. The fastest converging solution was predictably produced
by the steady solver (dynamic angle of attack at ±0�). Overall, little variation is found over the range of
dynamic angles of attack, with the poorest converging solution requiring only 10 additional multigrid cycles
to reach machine zero.
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5. Conclusion

The computational efficiency of the NLFD solver has been compared to that of UFLO82, a represen-
tative time accurate code. Unbiased comparisons were made between the methods by measuring the
amount of work required by each solver to reach equivalent error levels. Using error in coefficient of lift
as the figure of merit the NLFD code is 8–19 times faster than UFLO82. Using coefficient of moment
as the basis for comparison, the NLFD method is roughly three to nine times faster than the time-accurate
approach. The ratio of efficiency between the codes is provided as a range because the NLFD method gains
efficiency at higher temporal resolutions. In addition, numerical experiments confirm that the NLFD solver
retains its efficiency over a wide range of unsteady flow conditions.
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